

Data Analysis Competition: Dementia screening challenge

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN Université Paris-Saclay, Inria, CEA, Palaiseau, France

https://github.com/apmellot/Dementia screening challenge biomag 2022

Age distribution across sites

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Age distribution across sites

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Classification pipeline

Preprocessing:

MNE-BIDS pipeline : <u>https://mne.tools/mne-bids-pipeline/index.html</u>

poster IT-75

- → Resampling at 200 Hz
- → Bandpass between 0.1 Hz and 49 Hz
- → 10 second epochs without overlap

Classification pipeline:

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

PSD of the reduced training set averaged on the sensors.

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

PSD of the reduced training set averaged on the sensors.

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

PSD of the reduced training set averaged on the sensors.

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Feature vectors extracted from covariances:

Prerocessed M/EEG signal:

Covariances:

$$X(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \in \mathbb{R}^{n \times T_S} \longrightarrow C = \frac{1}{T_s - 1} X(t) X(t)^T \in \mathbb{R}^{n \times n}$$

where *n* is the number electrodes and T_s the number of sampled time points

https://mne.tools/stable/index.html

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Feature vectors extracted from covariances:

Definition of frequency bands

Name	low	δ	θ	α	eta_{low}	eta_{mid}	eta_{high}
Range (Hz)	0.1 - 1	1 - 4	4 - 8	8 - 15	15 - 26	26 - 35	35 - 49

→ One covariance matrix per frequency band averaged over all epochs

Pipeline:

[Sabbagh et al. 2019, 2020] [Engemann et al. 2022]

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Remaining issue: recording site

PSD of the reduced training set averaged on the sensors.

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Remaining issue: recording site

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Results on training set

Classification pipeline:

Results on the training set:

StratifiedShuffleSplit cross-validation from scikit-learn with 20 splits and test_size = 0.2

Mean accuracy: 71.9% ± 8.3%

Mean balanced accuracy: $64.3\% \pm 9.6\%$

Results on test set

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Acknowledgment

- Organisers of this competition.
- Alexandre GRAMFORT, Denis ENGEMANN for encouraging us to work on this challenge and for

sharing their machine learning expertise.

- The Inria MIND Team.
- ANR funding AI-cog (ANR-20-IADJ-0002)

Results on test set

	Recall	Precision	F-score	
Control	85%	71%	78%	
MCI	MCI 38%		40%	
Dementia	Dementia 57%		65%	
	mean recall	mean precision	mean F-score	
	60%	62%	61%	

Overall accuracy: 67%

Apolline MELLOT - Benoît MALEZIEUX - Cédric ALLAIN

Riemannian geometry concepts

Log of a matrix: $M = U\Delta U^{\top} \mapsto \log(M) = U\log(\Delta)U^{\top}$

Apolline MELLOT