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1. Context




1. Context: Analysis of complex biological signals

Electroencephalography (EEG): non invasive recording of brain activity

ML applied to EEG:

e Classification: Brain Computer Interface (BCl), epileptic seizure

detection, sleep staging, etc.
® Regression: Risk scores, optimal drug-dosage, brain age, etc.

— Focus on regression context @ —

Visual stimulus

® EEG recording setup: |
|
o Recording protocol: rest, visual stimuli... |

o EEG cap with electrodes
o  Amplifier

Connector:
EEG cable

to amplifier

[Hari and Puce 2023]




1. Context: Generalization of ML models for EEG

Data generation

® Generalize across different context / populations: Younger

Example: extraction of validate biomarkers

[Dockes et al. 2021]

Increasing the number of data
e Accurate ML models: _

Increasing the performances

— Pooling several existing datasets: recent emergence of large databases
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1. Context: Inherent variability of EEG signals
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1. Context: Dataset shift and domain Adaptation

Different types of shift:

This variability leads to discrepancies across Sourcedata O N tE SN o et data
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[Gnassounou et al, 2024b]
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https://scikit-adaptation.github.io/

2. Motivation




2. Motivation: To deal with joint shiftin Xand y

e Real world applications like multicenter studies: both shift in X and y

Example: HarMNQEEG dataset for age prediction

X: Mean log-power y: Age distribution
105 0.08 - ,

a B . 0.06 - Slte
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Q. —97 0.027 1 Switzerland

—10- I 1 1 0.00 -
0 10 20 0 50 100
Frequency (Hz) Age (years)

Goal: Multi-source DA to tackle shifts in X and y jointly [Li et al 2022]
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2. Motivation: To deal with joint shiftin Xand y

Combine several datasets as Assume to know the mean
train set (source) and test on a of the target labels 7+
new unseen dataset (target) to adapt the target data

\ —

Multi-source test-time semi-supervised Domain Adaptation

No need to re-train for a
new target dataset
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3. Related work




3. Related work: Riemannian geometry for EEG

Riemannian-based models proved effective with EEG in BCI, biomarker exploration...

—Use spatial covariance matrix as descriptor:

Spatial covariance representation

EEG signals are multivariate time series X € R%*7 recorded from d sensors over 7' time points.

The spatial covariance matrix Y € ST of Xis defined as:

1
Y= —_XXT
T

e Covariance matrices are symmetric positive definite: smooth manifold

[Pennec et al. 2006]
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3. Related work: Riemannian geometry for EEG

++
Sy

e Covariance matrices are symmetric positive definite: smooth manifold

[Boumal 2023]

.+



3. Related work: Riemannian geometry for EEG

7

++
Sy

e Covariance matrices are symmetric positive definite: smooth manifold
e Vector space defined at each point: tangent space

[Boumal 2023]
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3. Related work: Riemannian geometry for EEG

7

++
Sy

e Covariance matrices are symmetric positive definite: smooth manifold
e \Vector space defined at each point: tangent space
e Equipped with smooth inner product: Riemannian manifold [Pennec et al. 2006]

Affine-invariant Riemannian metric

Given I, I € T5:S]™: (T, I}y = tr (Z7'TE'TY)




3. Related work: Riemannian geometry for EEG

geodesic

Affine-invariant Riemannian distance

6r(, %) = || log (BF =7 ) ||
with log : ST™ — S, the matrix logarithm:
log(X) = Ulog AU
being > = UAUT the SVD of ¥

[Pennec et al. 2006]
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3. Related work: Riemannian geometry for EEG

Riemannian mean

Foraset {3;}Y, C SiT: N

Y = arg ming g+ Z Or(Z, %)?

i=1

[Pennec et al. 2006]
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3. Related work: Riemannian geometry for EEG

Lemma: Parallel transport (PT) to the identity

Given X, € ST, the parallel transport of Y’ along the geodesic from ¥ to the identity 7, at
a € [0,1]is: . .
PT (X, X, a)=X2 ¥X2

® PT usually used to align distributions

e —



3. Related work: Riemannian geometry for EEG

—regression on the
tangent space

Riemannian logarithmic mapping and feature extraction

. _1 —=1 -1\ _1
Tangent vector: T — logg(E) = Y?%log (E 232 ) .2 € TES:{J”

Feature extraction:
d(d+1)

6 (5, %) = uvec (log;, (PT (3;,5,1))) = uvec (10g (z— 2§—>> c RYS

where uvec is the upper triangular part with off-diagonal elements multiplied by /2
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3. Related work: Riemannian DA for M/EEG

Re-center domains to identity

Each domain k€[[1,K] is parallel transported from its Riemannian mean ¥, to the identity:

[Zanini et al., 2018] [Yair et al., 2019]

.



3. Related work: Riemannian DA for M/EEG

Re-center domains to identity

Each domain k€[[1,K] is parallel transported from its Riemannian mean ¥, to the identity:

—Sarigrbaseliae thffbrairt wHehriushifisibgtween domains, re-centering to common reference

remove information of interest [Zanini et al., 2018] [Yair et al., 2019]
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4. Contribution




4. Contribution: Joint adaptation of shiftsin Xand y

Parallel transport along the geodesic: GOPSA

Each domain k€[1,K] is parallel transported along the geodesic between Riemannian mean X
and the identity:
S (Zi,ir X, @) = uvec (logy, (PT (Tys, By, ) )) = uvec <10g (Ek%a S ))

with a € [0, 1]

.




4. Contribution: Joint adaptation of shiftsin Xand y

Parallel transport along the geodesic: GOPSA

Each domain k€[1,K] is parallel transported along the geodesic between Riemannian mean X
and the identity:
S (Zi,ir X, @) = uvec (logy, (PT (Tys, By, ) )) = uvec <10g (ik_?a S ))

with a € [0, 1]
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4. Method: Train time

. N,
We have access to K labeled source domains {(2x., Yx.i) }.i

We define the concatenation of the source data:

— aq L (677
Zs(v) = [Cb (21,1,21, AN (ZK,NK,ZK,)]T c RNsxd(d+1)/2

Simultaneously learns features and regression model:

5 = arg 1Elg;m{ﬁs(v) = |lys — Zs(v)ﬁfé(v)II%}
v €

subjectto B%(7) = Zs(v)' (Mn + Zs()Zs(v) ") tys

1. Parallel transport the covariance matrices.
2. Vectorization and predicted output with linear regression.
3. Comparison with the true output values.
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4. Method: Test time

We have access to a new unseen target domain (ZT,z')f\Qi and assume to know ¥r.

We define the concatenation of the target data:
3 = T
Zr(v) = [¢ (571, 57,0(0) 5 -, 6 (Srony, S7, 0(y))] € RNTXAED/

Test time optimization problem

Find the optimal parallel transport of the target domain:

* : — ]' * *
vr = arg minq L7(7) = (Ir — N—IJTVTZT(W)BS(%))Q}
vyeR T

with 55 the final regression coefficients of the train-time optimization.

1. Parallel transport the target covariance matrices
2. Vectorization and predicted output with pre-fitted linear regression:

gr = Zr(v7)B5(75) € RYT
3. Comparison with the true mean output value

T =



5. Empirical benchmarks




5. Empirical benchmarks: Baseline methods

e DO Dummy: always predict the mean value per domain

e No DA: all covariance matrices are projected to the tangent space at the source
geometric mean computed from all source points, no matter their recording sites

® Re-center/ : all domains re-centered to I / dispersions set to 1

® DO Intercept: fitting one intercept -, per domain

® GREEN: deep-learning architecture tailored for EEG applications — SPD network
[Paillard et al. 2024]
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5. Empirical benchmarks: Simulated data

Simulated data and shifts

Generative model: z;(t) = As;(t) ¥ = Elz;(t)zi(t) ]

with z;(t) € R? the observed time series, s;(t) € R? the underlying signal of the neural generators and A
the mixing matrix

d
Log-linear model: vi =Po+ > Bilog(pi)

=1
with p; > 0 the variance of the [-th element of s;(¢)

e ¢ £ )
Shift in the data: 2 — By By
with By € S;* >~ ¢ > ( controls the amplitude of the shift
Shift in the labels: P =
J

[Sabbagh et al. 2019, 2020]
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5. Empirical benchmarks: Simulated data

® 6 domains generated: 5 source, 1 target.

A ohiftin X B st i Shift in (X, y)
. o 2 - Lo
. .\ - S - o
e 0.51 3 3 1 ) 1 '8 %
\ oy \ \
\ i e :\
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No shift Max. shift No shift Max. shift No shift
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Maxfﬁﬁﬁ

Methods

DO Dummy

No DA

GREEN
Re-center
Re-scale

DO Intercept
GOPSA

e [No DA performs well with shifts in y only but fails when shifts in X are introduced

® Re-center correct shifts in X but perform poorly when shifts in y are added

e GOPSA outperforms other methods, handling both X and y shifts effectively
2 w0



5. Empirical benchmarks: HarMNQgEEG dataset

® 1564 participants - 14 studies - 9 countries

® Same montage with 19 channels

e No raw data —cross spectral matrices from 1.17Hz to

19.14Hz with a resolution of 0.39Hz
e Common artifact cleaning procedure

e Additional preprocessing:
o Common Average Reference
o Real part extraction
o Shrinkage regularization

Density

[Li et al. 2022]
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5. Empirical benchmarks: HarMNQgEEG dataset

e 5 different sites combination Example: A e
® Min-max normalization for each combination
CHBMP
e Re-center, performed worse than Do Dummy and No DA /J\
® GREEN performed better than No DA but with large variance witzerland
e DO Intercept and GOPSA showed similar performance A/\
. 75 100
DO Dummy q oo “sssvismmafuoswomn . posclmlmons 4 relpados;
No DA- e y am e st y vafiiipani  sm
GREEN * o ue wnnrmmniEReTt : o ot AR S { -y orsar . .
Re-center- “woediiiam; . & "E’* om— 1 - el
Re-scale M jwowd g - s
DO InterceptH e T - eeson | apndm
GOPSA- | e — < ___ vl i~ - |
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5. Empirical benchmarks: HarMNQgEEG dataset

® Closer look at the difference between GOPSA and DO Intercept
Difference: GOPSA - DO Intercept

; % p=0372 ‘* - * © p=0316
| - p=0.00 * o o * p = 0.000

% - p=0.136 P“@"“‘" o %‘* p=0.051
Cu03MRS-, = . 364 Hﬁﬂ | | —.p _ 0_473 e * | | _. *‘&‘ © p = 0.385

Ba,Cho,G,S‘p = 0.000

Be,Chb,S-p = 0.000

Ba CO G' =(), 001

L [ R ] B s
I
)
()
o
o

Ba,Be,Cho,_ | . i _
Co,Cu90,G,R p = 0.000 * . p = 0.000 % . o . * p = 0.006
0.2 -0.1 0 0.1 0 2 0. 2 -0 1 0 0.1 0202 -0.1 0 0.1 0.2
Normalized Spearman’s p 1 Normalized R? score 1 Normalized MAE |

® GOPSA significantly outperformed the baseline methods in some site combinations, but

not all — not all site combinations show joint (X, y) shifts

.



5. Empirical benchmarks: Model inspection

e NO DA e Recenter e GOPSA
A Barbados («=0.9) Switzerland («=0.7) B
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No DA: high variability between sites
Re-center flattens PSDs: too much information loss

GOPSA harmonizes PSDs across sites + linear relationship between alpha values and age
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6. Conclusion

® GOPSA handles joint shifts in X and y using by learning domain-specific re-centering

operators and a global regression model.

® Achieved better performance on the HarMNQEEG dataset across multiple metrics in a

majority of site combinations compared to baseline methods.

® Implementation using PyTorch which readily supports its inclusion in Riemannian

deep learning models.
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