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1. Context: Analysis of complex biological signals
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Electroencephalography (EEG): non invasive recording of brain activity

ML applied to EEG:

● Classification: Brain Computer Interface (BCI), epileptic seizure 
detection, sleep staging, etc.

● Regression: Risk scores, optimal drug-dosage, brain age, etc.

→ Focus on regression context

● EEG recording setup:

○ Recording protocol: rest, visual stimuli…
○ EEG cap with electrodes

○ Amplifier
[Hari and Puce 2023]
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● Generalize across different context / populations:

Example: extraction of validate biomarkers

[Dockes et al. 2021]

Increasing the number of data
=

 Increasing the performances

● Accurate ML models: 

→ Pooling several existing datasets: recent emergence of large databases



1. Context: Inherent variability of EEG signals
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● Many causes of variability in EEG 

data: 

○ recording devices 

○ populations

○ recording sites 

○ preprocessing

[Li et al 2022]



1. Context: Dataset shift and domain Adaptation
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This variability leads to discrepancies across 

datasets called dataset shifts.

→ Problem: dataset shifts limit generalization of 

ML models

Source: SKADA 
[Gnassounou et al, 2024b] 

Different types of shift:

Domain adaptation (DA) tries to reduce shift 

between datasets.

But DA methods for EEG usually focus on one 

type of shift →not realistic

https://scikit-adaptation.github.io/
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2. Motivation: To deal with joint shift in X and y
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● Real world applications like multicenter studies: both shift in X and y 

Example: HarMNqEEG dataset for age prediction

●

Goal: Multi-source DA to tackle shifts in X and y jointly [Li et al 2022]



2. Motivation: To deal with joint shift in X and y
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Multi-source test-time semi-supervised Domain Adaptation

Combine several datasets as 
train set (source) and test on a 

new unseen dataset (target)

No need to re-train for a 
new target dataset 

Assume to know the mean 
of the target labels y_t

to adapt the target data
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Riemannian-based models proved effective with EEG in BCI, biomarker exploration…

→Use spatial covariance matrix as descriptor:

Spatial covariance representation

EEG signals are multivariate time series                       recorded from     sensors over       time points.

 The spatial covariance matrix                    of      is defined as:

● Covariance matrices are symmetric positive definite: smooth manifold

[Pennec et al. 2006]
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✖ 

● Covariance matrices are symmetric positive definite: smooth manifold

[Boumal 2023]
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✖ 

● Covariance matrices are symmetric positive definite: smooth manifold

● Vector space defined at each point: tangent space

[Boumal 2023]
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✖ 

● Covariance matrices are symmetric positive definite: smooth manifold

● Vector space defined at each point: tangent space

● Equipped with smooth inner product: Riemannian manifold

Affine-invariant Riemannian metric

Given                              :

[Pennec et al. 2006]



✖ 
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✖ 

geodesic

Affine-invariant Riemannian distance

with                            the matrix logarithm: 

 being                        the SVD of 

[Pennec et al. 2006]



✖ 

3. Related work: Riemannian geometry for EEG

17

✖ 

✖ 

Riemannian mean

For a set                             :

[Pennec et al. 2006]



✖ 

3. Related work: Riemannian geometry for EEG
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✖ 

✖ 

Lemma: Parallel transport (PT) to the identity

Given                        , the parallel transport of       along the geodesic from      to the identity      at  
                  is:

● PT usually used to align distributions

✖ 



✖ 
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✖ 

✖ 

Riemannian logarithmic mapping and feature extraction 

Tangent vector:

Feature extraction:

where           is the upper triangular part with off-diagonal elements multiplied by 

→regression on the   
    tangent space



3. Related work: Riemannian DA for M/EEG
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[Zanini et al., 2018] [Yair et al., 2019]

✖ 
✖ 

✖ 

✖ 
✖ 

✖ 

✖ 

✖ ✖ 
✖ 

✖ ✖ 

✖ 

Re-center domains to identity

Each domain                  is parallel transported from its Riemannian mean       to the identity:
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[Zanini et al., 2018] [Yair et al., 2019]

✖ 

✖ 
✖ ✖ 

✖ 

✖ 
✖ ✖ 

✖ ✖ 

Re-center domains to identity

Each domain                  is parallel transported from its Riemannian mean       to the identity:

✖ 
✖ 

→Problem: when different y distributions between domains, re-centering to common reference 

remove information of interest

→Strong baseline for brain when no shift in y
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✖ 
✖ 

✖ 

✖ 
✖ 

✖ 

✖ 

✖ ✖ 
✖ 

✖ ✖ 

✖ 

Parallel transport along the geodesic: GOPSA

Each domain                   is parallel transported along the geodesic between Riemannian mean       

and the identity:

with                   
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✖ 

✖ 

✖ 

✖ ✖ 
✖ 

✖ ✖ 

✖ 
✖ ✖ ✖ 

✖ 

Parallel transport along the geodesic: GOPSA

Each domain                   is parallel transported along the geodesic between Riemannian mean       

and the identity:

with                   
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Train time optimization problem

Simultaneously learns features and regression model:

subject to

1. Parallel transport the covariance matrices.
2. Vectorization and predicted output with linear regression.
3. Comparison with the true output values.

We have access to      labeled source domains

We define the concatenation of the source data: 



4. Method: Test time
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Test time optimization problem

Find the optimal parallel transport of the target domain:

with        the final regression coefficients of the train-time optimization.

We have access to a new unseen target domain                  and assume to know      .

We define the concatenation of the target data:

1. Parallel transport the target covariance matrices 
2. Vectorization and predicted output with pre-fitted linear regression:

3. Comparison with the true mean output value
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● DO Dummy: always predict the mean value per domain

● No DA: all covariance matrices are projected to the tangent space at the source 

geometric mean computed from all source points, no matter their recording sites

● Re-center / Re-scale: all domains re-centered to Id / dispersions set to 1

● DO Intercept: fitting one intercept ꞵ
0
 per domain

● GREEN: deep-learning architecture tailored for EEG applications → SPD network 

[Paillard et al. 2024]
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Simulated data and shifts

Generative model: 

with                      the observed time series,                     the underlying signal of the neural generators and           
the mixing matrix 

Log-linear model:

with               the variance of the   -th element of          

Shift in the data: 

with 

Shift in the labels: 

controls the amplitude of the shift

[Sabbagh et al. 2019, 2020]



5. Empirical benchmarks: Simulated data 
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● 6 domains generated: 5 source, 1 target. 

● No DA performs well with shifts in y only but fails when shifts in X are introduced

● Re-center correct shifts in X but perform poorly when shifts in y are added

● GOPSA outperforms other methods, handling both X and y shifts effectively



5. Empirical benchmarks: HarMNqEEG dataset
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● 1564 participants - 14 studies - 9 countries

● Same montage with 19 channels

● No raw data →cross spectral matrices from 1.17Hz to 

19.14Hz with a resolution of 0.39Hz

● Common artifact cleaning procedure

● Additional preprocessing: 

○ Common Average Reference

○ Real part extraction

○ Shrinkage regularization [Li et al. 2022]



5. Empirical benchmarks: HarMNqEEG dataset
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● 5 different sites combination                                          Example:

● Min-max normalization for each combination

● Re-center, Re-scale performed worse than Do Dummy and No DA

● GREEN performed better than No DA but with large variance

● DO Intercept and GOPSA showed similar performance



5. Empirical benchmarks: HarMNqEEG dataset
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● Closer look at the difference between GOPSA and DO Intercept

● GOPSA significantly outperformed the baseline methods in some site combinations, but 

not all → not all site combinations show joint (X, y) shifts



5. Empirical benchmarks: Model inspection
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● No DA: high variability between sites

● Re-center flattens PSDs: too much information loss

● GOPSA harmonizes PSDs across sites + linear relationship between alpha values and age
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● GOPSA handles joint shifts in X and y using by learning domain-specific re-centering 

operators and a global regression model.

● Achieved better performance on the HarMNqEEG dataset across multiple metrics in a 

majority of site combinations compared to baseline methods.

● Implementation using PyTorch which readily supports its inclusion in Riemannian 

deep learning models.
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You are all invited at my PhD defense on 
Friday 8 November at 10am!


